Eigenvalue problems for slice functions
نویسندگان
چکیده
Abstract This paper addresses particular eigenvalue problems within the context of two quaternionic function theories. More precisely, we study concrete classes problems, first one for slice derivative operator in class slice-regular functions and second Cauchy–Riemann–Fueter axially monogenic functions. The are related to each other by four-dimensional Laplace Fueter’s Theorem. As an application a case order obtain representation solutions time-harmonic Helmholtz stationary Klein–Gordon equations.
منابع مشابه
A New Inexact Inverse Subspace Iteration for Generalized Eigenvalue Problems
In this paper, we represent an inexact inverse subspace iteration method for computing a few eigenpairs of the generalized eigenvalue problem Ax = Bx [Q. Ye and P. Zhang, Inexact inverse subspace iteration for generalized eigenvalue problems, Linear Algebra and its Application, 434 (2011) 1697-1715 ]. In particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملOrthogonal Functions and Inverse Eigenvalue Problems
The Newton polygon, an elementary geometric construction first devised by Sir Isaac Newton, has been often used in the context of perturbation theory as a tool for deriving explicit first-order eigenvalue perturbation expansions. On one hand, this usually gives useful information on the directions in which perturbed eigenvalues move, something which is crucial in several practical situations wh...
متن کاملsemi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method
در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...
15 صفحه اولa new inexact inverse subspace iteration for generalized eigenvalue problems
in this paper, we represent an inexact inverse subspace iteration method for com- puting a few eigenpairs of the generalized eigenvalue problem ax = bx[q. ye and p. zhang, inexact inverse subspace iteration for generalized eigenvalue problems, linear algebra and its application, 434 (2011) 1697-1715 ]. in particular, the linear convergence property of the inverse subspace iteration is preserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annali di Matematica Pura ed Applicata
سال: 2022
ISSN: ['1618-1891', '0373-3114']
DOI: https://doi.org/10.1007/s10231-022-01208-8